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Phase effect of two coupled periodically driven Duffing oscillators
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We consider the effect of phase difference in mutually coupled chaotic oscillators with a large coupling
strength. The phase difference destroys the synchronization of chaotic oscillators, and lag synchronization is
observed. For large difference, it even takes the coupled oscillators from chaotic motion to regular motion. For
small frequency detuning of two driving forces, stochastic breathing, bifurcation delay, and stochastic transi-
tion are observed. The mutually coupled periodically driven Duffing oscillators are taken as a numerical
example[S1063-651X98)05911-X]

PACS numbd(s): 05.45+b

[. INTRODUCTION ing term can allow the response system to synchronize with
the driven systenmil4]. However, for driven systems, in the

The phenomenon of synchronization of coupled chaotidypical case, the phase and frequency of these two systems
system has recently become a great topic of interest. Mangre often not in coincidence. Therefore, the phase difference
situations can be represented in terms of coupled nonlinedtetween the two forces may effect chaos synchronization.
such as optic§l], Josephson-junction arraj8], condensed- Recently, it has been shown that the phase difference of two
matter physicg3], chemical reactio4], and biology[5]. externally driven forces can play an important role in the
The dynamics of two coupled maps has been repdiéd driven systems. For example, in the case of suppres;ion of
For a diffusely coupled autonomous continuous-time systen£haos by means of weak parametric modulations in the
The chaos synchronization composed of identical chaotic odorced pendulum, a suitable initial phase difference between
cillators has been studied, the general conditions for stabilitfh€ two modulations can suppress chaos using very small
of the synchronized state was derivEd. The two sym- amplitude[15,16. To study the effects of the phase and the
metrically coupled resonators are found to display periogsmall detuning of two frequencies in the externally driven
doubling, Hopf bifurcations, entrainment horns, and breakug®scillators, we consider two mutually coupled Duffing oscil-
of the torus[s]. A System of two Coup|ed van der Pol oscil- lators. The driven double-well Dufflng oscillator has been
lators shows a rich fractal structure when several attractorgarefully investigated17]. Bifurcation diagrams and phase
coexist[9]. Bifurcation diagrams and phase diagrams of twodiagrams of the two-coupled periodically drivedentical
coupled periodically driven identical Duffing oscillators Duffing oscillators have been investigatgis].
were presented10]. Intermingled basins in nonlinearly ~ The single driven Duffing oscillator is expressed by
coupled Duffing oscillators have been reporféd]. In these
works, the frequency and the phase difference of external

forces are identical. The synchronization of chaotic oscillay hareq is the damping parameter, and the other two param-

tors, both theoretically and in analog electronic circuits, ha%tersﬁ and o are the amplitude and the frequency of an
been investigate@2]. The new effect of phase synchroni- external driving force, respectively. Far=0.1, 3=0.3, and

zation of weakly coupled self-sustained chaotic osmllatorsw:L this equation has two attractors, with one being cha-

Pas beednt;oun§13], becglusc(aj.in tthgze systcl—:;ms thl(.':' ph?f]e i%tic and the other being large stable 1-periodic for different
ree, and thereltore can be adjusted by small coupling. Therqgsia; conditions [19]. Here, we just consider the chaotic

fore, chaos synchronization in mutually coupled autonomoug .- «tor For very smalB, Eq. (1) has two period-1 orbits
systems includes two transitions. First, phase synchronizao-ne Mné in the region(>,0 Which we denot®* and the’
tion (no threshold for coupling strengtlappears. Second, other in the regiorx<0, Wh1iCh we denotd - (se,e Fig. 9

further increase of coupling induces the chaotic amplitudesWritten as a set of differential equation, Ed) has the form

X+ ax—x+x3= B cog wt), (1)

coincidence.
Many previous works focus on autonomous differential X=y,
equations. For nonautonomous chaotic oscillators, Carroll %)
and Pecora have shown that correcting the phase of the forc- y=—ay+x—x3+ B coq wt).
The mutually coupled Duffing oscillator considered in the
*Electronic address: jhdai@aphy.iphy.ac.cn paper is written as
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FIG. 1. The Lyapunov exponertE) spectra(lines) and the ¢
largest transversal LEopen circles vs coupling strengttC for ¢ FIG. 2. The transversal Lyapunov exponémtE) spectra vs
=0. It indicates that, aC>C,;~0.19, chaos synchronization oc- coupling strengthC for ¢=0.27. It indicates that, atC>C,
curs, and the coupled system turns from hyperclfaith two posi-  ~0.19, The largest TLE turn to zero.
tive LEs) to chaos. The Largest Lyapunov exponent always remains
at the same value. fold x=u. Letd,=x—u, dy=y—», and supposg~u, then
we can get
x=y+C(u—x), (33 .
dy=dy—2Cd,,
y=—ay+x—x3+ B coq wt), (3b) ' (4)
dy=— ad,+d,—3x%— B sin(@/2)sin(wt+ ¢/2).
U=V+C(X—U), 30 y y T Ux B sin(¢/2)sin( ®l2)

) 5 For ¢=0, the sin term vanishes; then whézC,, d, and
v=—avtu-u'tpco§(otAw)tte],  (3d  d, tend to zero and a complete synchronous state occugs. If
is not zero, there always exists a zero Lyapunov exponent in
Eq. (4); d, andd, do not tend to zero.

Figure 3a) shows a bifurcation diagram for coupling
C%trengthC=1 versus the initial phase. To quantitatively
determine the level of the mismatch of chaos synchroniza-

=n2m/w, heren is a positive integer. tion, we use a similarity functiols(7) as a time averaged

The paper is organized as follows: Section Il discusses thgjgarence between the variablgsindu taken with the time
effect of phasep for Aw=0. Section Ill gives the results of g 7[20]

the small frequencies detuning. Finally, Sec. IV includes a
summary of the results and conclusions.

where ¢ and C are the initial phase difference of the two
oscillators and the coupling strength, respectivelys &
<2m. Aw is a frequency detuning. Our discussion is base
on a Poincare map of Eq(3) strobed at timest,

Il. EFFECT OF THE PHASE DIFFERENCE

In this case Aw=0, so two coupled Duffing oscillators =
have same frequenay. In what follows, we fixw=1. When
coupling strengthC is zero, the amplitudes of two chaotic
oscillators are different because of the sensitive dependence
on the initial conditions. Wherr=0 andC=C, (~0.19
(Fig. 1), the largest transversal Lyapunov exponent is nega-

tive, and the two chaotic oscillators can be completely syn- 2

chronized, which means(t)=u(t). For the case that the b
initial phase differencep is not zero(¢=0.27, see Fig. 2, 1.

the C, also is about 0.19, which is the samegss 0. Com- i

pare Fig. 1 and Fig. 2; it indicates that the coupling strength
just overcomes the initial sensitivity of chaotic orbits for the
forced driven systems. Because the phase of these systems is
not free, the two output signs contain a phase difference. On
the contrary, for autonomous continuous systems, when the
coupling strength is above a certain critical value, the '%mn 05 Lon L5n > On
coupled systems arrive at complete synchronization. Phase

synchronization has occurred in this progress because it has
no threshold 13]. However, if the initial phase difference FIG. 3. Bifurcation diagram for large coupling strength=1
is not zero(Fig. 2), even for largeC, the complete synchro- showing the Poincare map vs the initial phase differepcét ¢
nization of two oscillators is destroy¢#ig. 3(b)]. To under-  ~0.37 and ¢~0.4s periodic orbits occur(a) x vs ¢. (b) Xx—u vs
stand this result, we now discuss the synchronization manie. This indicates that the synchronous state occuks=a.




PRE 58 PHASE EFFECT OF TWO COUPLED PERIODICANM.. .. 5685

0.12 0.57
4 © ]
0.10 § 0.0_:
- ]
. 0.08 2 ]
% g —0.5':
0.06 g ]
$ -1.01
0.04 g 1
2 1s]
0.02 - g 1.5:
] 3 ]
0.00-++ . ———— 20+———
000 0.05%  0.10m  Olsm 020 00m 02n 04r 061 08t 1.0m
? ¢

FIG. 4. The similarity functior§S(0) vs the initial phase differ-
encee for C=1. For complete synchronizatio§(0)=0. The in-
crease ofS(0) with ¢ is linear.

FIG. 6. Lyapunov exponent spectra gfor C=1.

increase of the coupling streng@ for the weak coupling
5 case,S decreases exponentiallfig. 8b)]; but for strong
()= (Ix(t+7)—u®]%) 5y coupling,S(0) is proportional taC ! [Fig. 8@)]. This indi-
[OA))(ua(1) 1V cates that strong coupling strength can suppress the deviation
induced by the phase difference. Therefore, in a rough man-
and plot the similarity functior8(0) versuse; the result is  ner of speaking, we can tak&t)~u(t), y(t)~uv(t) for the
plotted in Fig. 4 forC=1. The increase of the mismatch with very strong coupling. Defines (t)=[x(t)+u(t)]/2, and

the phase difference is linear for smallFigure 5 shows the s,(t)=[y(t) +v(t)]/2. Equation(3a) adds Eq(3c), and Eq.
similarity functionsS() for various coupling strengths. For (3p) adds Eq.(3d), so
strong coupling strengthQ>C;), we can observe th&,

[a minimum of S(7)] appears. It indicates the existence of Sy=S5y,
some characteristic time shiffy betweenx(t) andu(t). As _ (6)
C tends to infinity,S,,, and =, tend to zero. In this case, two Sy= —asy+ sx—s)2(+,8 cog ¢/2)coq wt + ¢/2).

oscillators are complete synchronization.
Figure 6 is the Lyapunov exponent spectra corresponding Equation (6) is similar to Eq. (2), we find B

to Fig. 3. It indicates that, ab~0.30m, and¢~0.44r, the  ~ B cos/2), and time is previous t@/2 in the strongly

chaotic oscillation turn out to be periodic, vice versaFor  coupled case. The result is qualitatively verified in Fig. 9,

stronger coupling strengti=5 we obtain Fig. 7. Compare

it with Fig. 3; we can find that the two results have very

similar bifurcation diagrams, ang(t) —u(t) is effectively

suppressed. To quantitatively describe the relationship be-

tween the coupling strength and the level of chaos desyn- =

chronization, we calculate the similarity functi@f0) ver-

susC, and sete=0.27r. The result shows in Fig. 8. With
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FIG. 7. Bifurcation diagram for a stronger coupling stren@th
FIG. 5. Similarity functionS(7) for different values of coupling =5 showing the Poincare map vs the initial phase differend@)
strengthC. WhenC>C,, Sn, @ minimum ofS(7), appears. X Vs ¢. (b) Xx—u vs ¢.
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’ ’ ’ FIG. 10. The temporal dynamics of the variables @ 0.05
c andAw=0.004,(a) x+u, (b) x—u, (c) x and (d) the sum of the
FIG. 8. The similarity functiorS(0) vs the coupling strengte two amplitudes. It indicates two chaotic oscillators are not synchro-
nous.

for the phase difference=0.27. (a) For strong coupling strength,
S(0) is proportional toC ™. (b) For weak coupling caseS(0)
exponentially decreases. Ill. DETUNING OF FREQUENCIES

In many practical situations, the frequencies of two exter-
where the bifurcation diagram is plotted vergifor Eq.(2).  nally driven forces usually have small detuning. For small
Compare Fig. 9 with Fig. 7; they have a very similar bifur- enough coupling strength, two chaotic oscillators are almost
cation diagram, so the strong coupling strength makes two
coupled systems identical. On the contrary, the phase differ-
ence prevents this tendency and enlarges the chaotic region
(compare Fig. 3 with Fig. )7 For the large enough phase
shift, it even eliminates chaos, and turns chaotic motion into
periodic, which corresponds to smal This conclusion is
obvious if we consider Eq6).

2
1
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-1 ] 1
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0.30 0.25 0.20 Time
FIG. 11. The temporal dynamics of the variables @+ 1 and
,B Aw=0.004,(a) x+u, (b) x—u, (c) x, and(d) the sum of amplitude

. ) . . . of two forces. This indicates that two chaotic oscillators synchro-
FIG. 9. The b!furcatlo? Q|agram of E@) ;howmg the Pomcare nize when cogp(t)]==1. The sequence of regular moti& and
map vs the amplitudg. P indicates the period-1 orbit lying in the P~ is stochastic

regionx>0.
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FIG. 12. The correlation function Cor) of the sequence d®™* .
and P~ for calculating 15 500 T. FIG. 13. The Poincare map fas(t)mod(27) for Aw=0.004

andC=5. When compared with Fig. 3, it is obvious that bifurcation

delay occurs, the motion from chaos to period is stochastic, and the

bifurcation point is stochastically distributed between 70.&8nd
uncorrelated. Figure 10 shows the temporal dynamics of the. 62:.

variablex+u [Fig. 10@)], x—u [Fig. 10b)], x [Fig. 10c)]
and sum of two externally driving forcg&ig. 10d)] for C
=0.05. In this case, the initial phase difference is not impor-aforementioned time dependent phase differesdg, so we
tant. In the follows, we sep=0, andA w=0.004. For large expected that bifurcation delay can be observed. Figure 13 is
coupling strength, there are several interesting phenomena, Poincare section forp'[ ¢’ = ¢(t)mod27]. Comparing
stochastic breathing, bifurcation delg81,22), and stochastic Fig. 7 with Fig. 13, we recognize that the bifurcation delay
transition. occurs from chadperiod to periodchaos. The symmetry
Figure 11 shows the temporal dynamics of the variabldn Fig. 3 is broken in Fig. 13. Becauge varies slowly, and
x+u [Fig. 1X@)], x—u [Fig. 11(b)], x [Fig. 11(c)] and sum just passes through the bifurcation pointcorresponding to
of two externally driving forcegFig. 11(d)]. It shows that the static bifurcation diagram, the oscillators will remain for
the regular and chaotic motions periodically appear with asome time before arriving at the new motion state. So bifur-
new periodT=2n/Aw, but the sequence of regular motion cation occurs fokp’ > ¢, . However, the transition from cha-
(P* or P7) is stochastic. We refer this intermittency as to otic motion to regular motion stochastically distributes in the
stochastic breathingA similar result has been reported in small region between 0.%0and 0.63r. It can be gqualita-
Ref.[16], the authors call the periodic appearance of regulatively explained as follows. Before transition occurs, the mo-
and chaotic motion as “breathing.” Referenickb]| explains  tion is chaotic. Whenp' varies and passes through a bifur-
this result by geometrical resonance theory. The differenceation point corresponding to the static bifurcation diagram,
between Ref[16] and our result is the two regular motions the system state can be regarded as initial conditions for
(P* or P™) are stochastic appearance. The physical interpreperiod orbit. The distribution of the initial conditions is sto-
tation of our results is made in terms of a time dependenthastic. If an initial state is close to the periodic orbit, the
phase differencep(t)=Awt, which comes from the small motion quickly tends to it; otherwise, the motion can be re-
difference of frequencies. The terfhcos(p/2) coswt+ ¢/2) garded as transient chaos, which needs a longer time to con-
in Eg. (4) is changed toB cod¢(t)/2)codwt+¢(t)/2]. It  verge to the periodic orbit. It induces the stochastic transi-
shows the sum of amplitudes of driving force slowly variestion.
with time, so the motion is very like the static bifurcation
diagram in Fig. 7. Suppose at some time[edd/2]=1, the
motion is chaotic. As time increaseg(t) very slowly
changes over the time interval, and the motion evolves cha- In this paper, we have considered the phase effect of the
otically up to a timet, for which ¢(t,) is above the bifur- two mutually coupled Duffing oscillators. The phase differ-
cation pointe in Fig. 7. Chaotic motion has same chance toence plays an important role. It has two effects: first, it is
visit the two basins, when it comes stochastically into thealmost equivalent to the change of the amplitude of the driv-
basin ofP* (or P7), the regular motion will bé®* (or P7).  ing force for the single oscillator. Second, it destroys the
To verify this results, we calculate 15500 T showing complete synchronization of two oscillators. Therefore, fur-
49.77% forP™ and 50.23% forP~, its correlation function ther increase of the phase difference even eliminates chaos
Cor(7) is plotted in Fig. 12. Therefore, appearancePdf (or  and leads the coupled oscillators to periodic motion. The
P™) is stochastic. coupling term suppresses the variation induced by the phase
Now we discuss bifurcation deld21] and from chaotic difference, brings about lag synchronization, and does not
motion to regular motion. The bifurcation delay has beenchange the dynamics. For the case of the large coupling
observed in various physical systef22], which an external strength, we have found stochastic breathing, bifurcation de-
parameter slowly varies in time, and was analyzed in Reflay, and stochastic transition for small frequency detuning.
[23]. The stochastic transition is reported in our paper. In ouWe report on stochastic breathing and transition. For very
model, there is not a slowly time dependent external paramstrong coupling and small phase difference, the variation of
eter, however, due to the frequency detuning, there exists ththe two states practically tends to zero, and the motion of the

IV. CONCLUSION
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