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Phase effect of two coupled periodically driven Duffing oscillators
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We consider the effect of phase difference in mutually coupled chaotic oscillators with a large coupling
strength. The phase difference destroys the synchronization of chaotic oscillators, and lag synchronization is
observed. For large difference, it even takes the coupled oscillators from chaotic motion to regular motion. For
small frequency detuning of two driving forces, stochastic breathing, bifurcation delay, and stochastic transi-
tion are observed. The mutually coupled periodically driven Duffing oscillators are taken as a numerical
example.@S1063-651X~98!05911-X#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

The phenomenon of synchronization of coupled chao
system has recently become a great topic of interest. M
situations can be represented in terms of coupled nonlin
such as optics@1#, Josephson-junction arrays@2#, condensed-
matter physics@3#, chemical reaction@4#, and biology@5#.
The dynamics of two coupled maps has been reported@6#.
For a diffusely coupled autonomous continuous-time syst
The chaos synchronization composed of identical chaotic
cillators has been studied, the general conditions for stab
of the synchronized state was derived@7#. The two sym-
metrically coupled resonators are found to display per
doubling, Hopf bifurcations, entrainment horns, and break
of the torus@8#. A system of two coupled van der Pol osc
lators shows a rich fractal structure when several attrac
coexist@9#. Bifurcation diagrams and phase diagrams of t
coupled periodically driven identical Duffing oscillato
were presented@10#. Intermingled basins in nonlinearl
coupled Duffing oscillators have been reported@11#. In these
works, the frequency and the phase difference of exte
forces are identical. The synchronization of chaotic osci
tors, both theoretically and in analog electronic circuits, h
been investigated@12#. The new effect of phase synchron
zation of weakly coupled self-sustained chaotic oscillat
has been found@13#, because in these systems the phas
free, and therefore can be adjusted by small coupling. Th
fore, chaos synchronization in mutually coupled autonom
systems includes two transitions. First, phase synchron
tion ~no threshold for coupling strength! appears. Second
further increase of coupling induces the chaotic amplitud
coincidence.

Many previous works focus on autonomous different
equations. For nonautonomous chaotic oscillators, Ca
and Pecora have shown that correcting the phase of the
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ing term can allow the response system to synchronize w
the driven system@14#. However, for driven systems, in th
typical case, the phase and frequency of these two syst
are often not in coincidence. Therefore, the phase differe
between the two forces may effect chaos synchronizat
Recently, it has been shown that the phase difference of
externally driven forces can play an important role in t
driven systems. For example, in the case of suppressio
chaos by means of weak parametric modulations in
forced pendulum, a suitable initial phase difference betw
the two modulations can suppress chaos using very s
amplitude@15,16#. To study the effects of the phase and t
small detuning of two frequencies in the externally driv
oscillators, we consider two mutually coupled Duffing osc
lators. The driven double-well Duffing oscillator has be
carefully investigated@17#. Bifurcation diagrams and phas
diagrams of the two-coupled periodically drivenidentical
Duffing oscillators have been investigated@18#.

The single driven Duffing oscillator is expressed by

ẍ1a ẋ2x1x35b cos~vt !, ~1!

wherea is the damping parameter, and the other two para
etersb and v are the amplitude and the frequency of
external driving force, respectively. Fora50.1,b50.3, and
v51, this equation has two attractors, with one being c
otic and the other being large stable 1-periodic for differe
initial conditions @19#. Here, we just consider the chaot
attractor. For very smallb, Eq. ~1! has two period-1 orbits,
one lying in the regionx.0, which we denoteP1, and the
other in the regionx,0, which we denoteP2 ~see Fig. 9!.
Written as a set of differential equation, Eq.~1! has the form

ẋ5y,
~2!

ẏ52ay1x2x31b cos~vt !.

The mutually coupled Duffing oscillator considered in t
paper is written as
5683 © 1998 The American Physical Society
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ẋ5y1C~u2x!, ~3a!

ẏ52ay1x2x31b cos~vt !, ~3b!

u̇5n1C~x2u!, ~3c!

ṅ52an1u2u31b cos@~v1Dv!t1w#, ~3d!

where w and C are the initial phase difference of the tw
oscillators and the coupling strength, respectively, 0<w
<2p. Dv is a frequency detuning. Our discussion is bas
on a Poincare map of Eq.~3! strobed at timestn
5n2p/v, heren is a positive integer.

The paper is organized as follows: Section II discusses
effect of phasew for Dv50. Section III gives the results o
the small frequencies detuning. Finally, Sec. IV include
summary of the results and conclusions.

II. EFFECT OF THE PHASE DIFFERENCE

In this case,Dv50, so two coupled Duffing oscillator
have same frequencyv. In what follows, we fixv51. When
coupling strengthC is zero, the amplitudes of two chaot
oscillators are different because of the sensitive depend
on the initial conditions. Whenw50 and C>C0 ~'0.19!
~Fig. 1!, the largest transversal Lyapunov exponent is ne
tive, and the two chaotic oscillators can be completely s
chronized, which meansx(t)5u(t). For the case that the
initial phase differencew is not zero~w50.2p, see Fig. 2!,
the C0 also is about 0.19, which is the same asw50. Com-
pare Fig. 1 and Fig. 2; it indicates that the coupling stren
just overcomes the initial sensitivity of chaotic orbits for t
forced driven systems. Because the phase of these syste
not free, the two output signs contain a phase difference.
the contrary, for autonomous continuous systems, when
coupling strength is above a certain critical value, t
coupled systems arrive at complete synchronization. Ph
synchronization has occurred in this progress because it
no threshold@13#. However, if the initial phase differencew
is not zero~Fig. 2!, even for largeC, the complete synchro
nization of two oscillators is destroyed@Fig. 3~b!#. To under-
stand this result, we now discuss the synchronization m

FIG. 1. The Lyapunov exponent~LE! spectra~lines! and the
largest transversal LE~open circles! vs coupling strengthC for w
50. It indicates that, atC.C0'0.19, chaos synchronization oc
curs, and the coupled system turns from hyperchaos~with two posi-
tive LEs! to chaos. The Largest Lyapunov exponent always rem
at the same value.
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fold x5u. Let dx5x2u, dy5y2n, and supposex'u, then
we can get

ḋx5dy22Cdx ,
~4!

ḋy52ady1dx23x22b sin~w/2!sin~vt1w/2!.

For w50, the sin term vanishes; then whenC>C0 , dx and
dy tend to zero and a complete synchronous state occurs.w
is not zero, there always exists a zero Lyapunov exponen
Eq. ~4!; dx anddy do not tend to zero.

Figure 3~a! shows a bifurcation diagram for couplin
strengthC51 versus the initial phasew. To quantitatively
determine the level of the mismatch of chaos synchron
tion, we use a similarity functionS(t) as a time averaged
difference between the variablesx andu taken with the time
shift t @20#,

s

FIG. 2. The transversal Lyapunov exponent~TLE! spectra vs
coupling strengthC for w50.2p. It indicates that, atC.C0

'0.19, The largest TLE turn to zero.

FIG. 3. Bifurcation diagram for large coupling strengthC51
showing the Poincare map vs the initial phase differencew. At w
'0.3p andw'0.4p periodic orbits occur.~a! x vs w. ~b! x2u vs
w. This indicates that the synchronous state occurs atw50.
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S2~t!5
^@x~ t1t!2u~ t !#2&
@^x2~ t !&^u2~ t !&#1/2 , ~5!

and plot the similarity functionS(0) versusw; the result is
plotted in Fig. 4 forC51. The increase of the mismatch wit
the phase difference is linear for smallw. Figure 5 shows the
similarity functionsS(t) for various coupling strengths. Fo
strong coupling strength (C.C0), we can observe thatSmin
@a minimum ofS(t)# appears. It indicates the existence
some characteristic time shiftt0 betweenx(t) andu(t). As
C tends to infinity,Smin andt0 tend to zero. In this case, tw
oscillators are complete synchronization.

Figure 6 is the Lyapunov exponent spectra correspond
to Fig. 3. It indicates that, atw'0.30p, andw'0.44p, the
chaotic oscillation turn out to be periodic, orvice versa. For
stronger coupling strengthC55 we obtain Fig. 7. Compare
it with Fig. 3; we can find that the two results have ve
similar bifurcation diagrams, andx(t)2u(t) is effectively
suppressed. To quantitatively describe the relationship
tween the coupling strength and the level of chaos des
chronization, we calculate the similarity functionS(0) ver-
susC, and setw50.2p. The result shows in Fig. 8. With

FIG. 4. The similarity functionS(0) vs the initial phase differ-
encew for C51. For complete synchronization,S(0)50. The in-
crease ofS(0) with w is linear.

FIG. 5. Similarity functionS(t) for different values of coupling
strengthC. WhenC.C0 , Smin , a minimum ofS(t), appears.
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increase of the coupling strengthC, for the weak coupling
case,S decreases exponentially@Fig. 8~b!#; but for strong
coupling,S(0) is proportional toC21 @Fig. 8~a!#. This indi-
cates that strong coupling strength can suppress the devi
induced by the phase difference. Therefore, in a rough m
ner of speaking, we can takex(t)'u(t), y(t)'v(t) for the
very strong coupling. Definesx(t)5@x(t)1u(t)#/2, and
sy(t)5@y(t)1v(t)#/2. Equation~3a! adds Eq.~3c!, and Eq.
~3b! adds Eq.~3d!, so

ṡy5sy ,
~6!

ṡy52asy1sx2sx
21b cos~w/2!cos~vt1w/2!.

Equation ~6! is similar to Eq. ~2!, we find b
;b cos(w/2), and time is previous tow/2 in the strongly
coupled case. The result is qualitatively verified in Fig.

FIG. 6. Lyapunov exponent spectra vsw for C51.

FIG. 7. Bifurcation diagram for a stronger coupling strengthC
55 showing the Poincare map vs the initial phase differencew. ~a!
x vs w. ~b! x2u vs w.
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where the bifurcation diagram is plotted versusb for Eq. ~2!.
Compare Fig. 9 with Fig. 7; they have a very similar bifu
cation diagram, so the strong coupling strength makes
coupled systems identical. On the contrary, the phase di
ence prevents this tendency and enlarges the chaotic re
~compare Fig. 3 with Fig. 7!. For the large enough phas
shift, it even eliminates chaos, and turns chaotic motion i
periodic, which corresponds to smallb. This conclusion is
obvious if we consider Eq.~6!.

FIG. 8. The similarity functionS(0) vs the coupling strengthC
for the phase differencew50.2p. ~a! For strong coupling strength
S(0) is proportional toC21. ~b! For weak coupling case,S(0)
exponentially decreases.

FIG. 9. The bifurcation diagram of Eq.~2! showing the Poincare
map vs the amplitudeb. P1 indicates the period-1 orbit lying in the
regionx.0.
o
r-
ion

o

III. DETUNING OF FREQUENCIES

In many practical situations, the frequencies of two ext
nally driven forces usually have small detuning. For sm
enough coupling strength, two chaotic oscillators are alm

FIG. 10. The temporal dynamics of the variables forC50.05
and Dv50.004,~a! x1u, ~b! x2u, ~c! x and ~d! the sum of the
two amplitudes. It indicates two chaotic oscillators are not synch
nous.

FIG. 11. The temporal dynamics of the variables forC51 and
Dv50.004,~a! x1u, ~b! x2u, ~c! x, and~d! the sum of amplitude
of two forces. This indicates that two chaotic oscillators synch
nize when cos@w(t)#561. The sequence of regular motionP1 and
P2 is stochastic.
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uncorrelated. Figure 10 shows the temporal dynamics of
variablex1u @Fig. 10~a!#, x2u @Fig. 10~b!#, x @Fig. 10~c!#
and sum of two externally driving forces@Fig. 10~d!# for C
50.05. In this case, the initial phase difference is not imp
tant. In the follows, we setw50, andDv50.004. For large
coupling strength, there are several interesting phenom
stochastic breathing, bifurcation delay@21,22#, and stochastic
transition.

Figure 11 shows the temporal dynamics of the varia
x1u @Fig. 11~a!#, x2u @Fig. 11~b!#, x @Fig. 11~c!# and sum
of two externally driving forces@Fig. 11~d!#. It shows that
the regular and chaotic motions periodically appear with
new periodT52p/Dv, but the sequence of regular motio
~P1 or P2! is stochastic. We refer this intermittency as
stochastic breathing. A similar result has been reported
Ref. @16#, the authors call the periodic appearance of regu
and chaotic motion as ‘‘breathing.’’ Reference@15# explains
this result by geometrical resonance theory. The differe
between Ref.@16# and our result is the two regular motion
~P1 or P2! are stochastic appearance. The physical interp
tation of our results is made in terms of a time depend
phase differencew(t)5Dvt, which comes from the smal
difference of frequencies. The termb cos(w/2)cos(vt1w/2)
in Eq. ~4! is changed tob cos„w(t)/2…cos@vt1w(t)/2#. It
shows the sum of amplitudes of driving force slowly vari
with time, so the motion is very like the static bifurcatio
diagram in Fig. 7. Suppose at some time cos@w(t)/2#51, the
motion is chaotic. As time increases,w(t) very slowly
changes over the time interval, and the motion evolves c
otically up to a timet1 for which w(t1) is above the bifur-
cation pointw in Fig. 7. Chaotic motion has same chance
visit the two basins, when it comes stochastically into
basin ofP1 ~or P2!, the regular motion will beP1 ~or P2!.
To verify this results, we calculate 15 500 T showin
49.77% forP1 and 50.23% forP2, its correlation function
Cor~t! is plotted in Fig. 12. Therefore, appearance ofP1 ~or
P2! is stochastic.

Now we discuss bifurcation delay@21# and from chaotic
motion to regular motion. The bifurcation delay has be
observed in various physical systems@22#, which an external
parameter slowly varies in time, and was analyzed in R
@23#. The stochastic transition is reported in our paper. In
model, there is not a slowly time dependent external par
eter, however, due to the frequency detuning, there exists

FIG. 12. The correlation function Cor(t) of the sequence ofP1

andP2 for calculating 15 500 T.
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aforementioned time dependent phase differencew(t), so we
expected that bifurcation delay can be observed. Figure 1
a Poincare section forw8@w85w(t)mod2p#. Comparing
Fig. 7 with Fig. 13, we recognize that the bifurcation del
occurs from chaos~period! to period~chaos!. The symmetry
in Fig. 3 is broken in Fig. 13. Becausew8 varies slowly, and
just passes through the bifurcation pointwc corresponding to
the static bifurcation diagram, the oscillators will remain f
some time before arriving at the new motion state. So bif
cation occurs forw8.wc . However, the transition from cha
otic motion to regular motion stochastically distributes in t
small region between 0.50p and 0.63p. It can be qualita-
tively explained as follows. Before transition occurs, the m
tion is chaotic. Whenw8 varies and passes through a bifu
cation point corresponding to the static bifurcation diagra
the system state can be regarded as initial conditions
period orbit. The distribution of the initial conditions is sto
chastic. If an initial state is close to the periodic orbit, t
motion quickly tends to it; otherwise, the motion can be
garded as transient chaos, which needs a longer time to
verge to the periodic orbit. It induces the stochastic tran
tion.

IV. CONCLUSION

In this paper, we have considered the phase effect of
two mutually coupled Duffing oscillators. The phase diffe
ence plays an important role. It has two effects: first, it
almost equivalent to the change of the amplitude of the d
ing force for the single oscillator. Second, it destroys t
complete synchronization of two oscillators. Therefore, f
ther increase of the phase difference even eliminates ch
and leads the coupled oscillators to periodic motion. T
coupling term suppresses the variation induced by the ph
difference, brings about lag synchronization, and does
change the dynamics. For the case of the large coup
strength, we have found stochastic breathing, bifurcation
lay, and stochastic transition for small frequency detuni
We report on stochastic breathing and transition. For v
strong coupling and small phase difference, the variation
the two states practically tends to zero, and the motion of

FIG. 13. The Poincare map forw(t)mod(2p) for Dv50.004
andC55. When compared with Fig. 3, it is obvious that bifurcatio
delay occurs, the motion from chaos to period is stochastic, and
bifurcation point is stochastically distributed between 0.5p and
0.62p.
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coupled systems can be roughly described by the single
cillator. For the small detuning of the two driving freque
cies, the quasistatic drift in the phase appears; it makes
motion to evolve under the corresponding local almost ad
batic invariant.
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